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Abstract

This paper considers the elastic buckling of rectangular Mindlin plates that are subjected to partially distributed in-

plane edge loadings. A numerical algorithm based on the radial point interpolation method (RPIM) is proposed for the

solution of such plates. The pre-buckling stresses are first determined using the RPIM based on a two-dimensional (2-

D) elastic plane stress problem. The buckling load intensity factors for rectangular plates that incorporate these pre-

determined pre-buckling stresses are then computed via the RPIM based on the Mindlin plate theory. Numerical

examples of the plates with various boundaries and subjected to different partially distributed in-plane edge loadings are

presented. Shear-locking of the buckling load is studied. The results demonstrate the high accuracy of the proposed

RPIM.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Thick plates are important structural elements, and are used in a wide range of engineering applications.

They can be analyzed using the thin plate theory, but because the effects of transverse shear deformation are

neglected, the deflections are underestimated and the natural frequencies and buckling loads are over-

estimated. Notable works on buckling and vibration of thick plates include those of Wang et al. (1993),

Kitipornchai et al. (1993), Liew et al. (1995, 1996) and Cheung and Zhou (2002). The objective of this paper

is to determine the elastic buckling loads of the rectangular Mindlin plates that are subjected to partial in-

plane edge loads. This work is motivated by the fact that not many buckling results for this type of plates
are found in the literature. To obtain results for this problem, we employed a meshless method––the radial

point interpolation method (RPIM) for the analysis.
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Existing meshless methods have their displacement interpolated according to a set of scattered nodes in

the influence domain of the interpolation point. One can easily adjust the number of nodes and nodal

distribution for desired computational accuracy without complex procedures. The moving least squares

(MLS) technique was developed by mathematicians for data fitting and surface construction. The conti-
nuity of the MLS approximation depends mainly on the continuity of the chosen weight function. The

MLS technique uses a low-order polynomial basis to construct high-order continuous approximation by

choosing the appropriate weight function. Nayroles et al. (1992) were the first to employ the MLS technique

to construct shape functions for their diffuse element method (DEM). Liew et al. (2002a) developed a

meshless method that combined the MLS technique with the differential quadrature (DQ) method, called

the MLSDQ method. Based on the DEM, Belytschko et al. (1994) proposed a different approach, called the

EFG method. The EFG method uses the MLS technique to approximate displacements and the Galerkin

procedure to establish weak forms of system equations. The method provides stable and highly accurate
results. Liu et al. (1995) developed the reproducing kernel particle method (RKPM) by adding a correction

function to the kernel to improve the smooth particle hydrodynamics (SPH) approximation near the

boundaries. The modified interpolation in the RKPM satisfies consistency requirements. The shape func-

tion is smoother so that higher accuracy can be achieved for large deformation problems. Liew et al.

employed the RKPM for the analysis of large deformation (2002b), free vibration of rotating cylindrical

shells (2002c) and elasto-plasticity (2002d). The EFG and RKPM approximation functions are not equal to

unity at nodes, and the shape functions do not have delta function properties. This complicates the

imposition of essential boundary conditions.
Radial basis functions are insensitive to spatial dimension, do not depend on the direction of node to

interpolation point, and are continuously differentiable and integrable. A number of radial basis functions

have been used by mathematicians. Four forms of the functions with shape parameters are generally

used, i.e.,

(1) multi-quadrics (MQ): RiðxÞ ¼ ðr2i þ c2Þq;
(2) Gaussian (EXP): RiðxÞ ¼ expð�cr2i Þ;
(3) thin plate spline (TPS): RiðxÞ ¼ rgi ;
(4) logarithmic RBF: RiðriÞ ¼ rgi log ri.

where ri is the distance between the interpolation point x and node xi, c and g are the dimensionless shape

parameters, and q is the constant.

The MQ radial basis function was first proposed by Hardy (1990) for the interpolation of geographical

scattered data. The MQ radial basis function has been widely used in surface fitting and in constructing

approximate solution for partial differential equations (Kansa, 1990). The MQ radial basis function was

used in the PIM by Wang and Liu (2002).
The treatment of buckling of plates that are subjected to partially distributed in-plane edge loadings with

non-uniform pre-buckling stresses is generally more involved. First we must deal with the pre-buckling

stresses that are non-uniform near the in-plane edge loadings. The complex nature of the pre-buckling stress

field makes it almost impossible to obtain an exact solution for this problem. Hence, the RPIM is

implemented in the buckling analysis of Mindlin plates that are subjected to partially distributed in-plane

edge loadings. The pre-buckling stresses of the plates are first determined using the RPIM based on a two-

dimensional (2-D) elastic plane stress problem. The buckling loads of the plates with these predetermined

pre-buckling stresses are then computed by the RPIM based on the Mindlin plate theory. The ANSYS

software package, a type of finite element (FE) software, is also employed to calculate the buckling loads of

the plates for comparison. Numerical examples of Mindlin plates with different boundary conditions and

subjected to partially distributed in-plane edge loadings are presented. This study shows that the RPIM is

able to produce results with high accuracy.
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2. Displacement interpolation based on RPIM

A displacement uðxÞ ðx 2 fx; ygÞ in the problem domain is interpolated in a small neighborhood of

interpolation point x by using a radial basis function and polynomial basis (Wang and Liu, 2002) in the
RPIM, and is defined by
Fig. 1.

techniq
uðxÞ ¼
Xn

i¼1

RiðxÞai þ
Xm
j¼1

PjðxÞbj ð1Þ
where RiðxÞ is the radial basis function, ai is the unknown coefficient that corresponds to the radial basis

function, n is the number of nodes in the influence domain of interpolation point x, PjðxÞ is the polynomial

basis that has m polynomial terms, and bj is the unknown coefficient corresponding to the polynomial basis.
The interpolation function passes through all of the nodes in the influence domain. For one-dimensional

problems, the schematic interpolation function uhðxÞ is drawn in Fig. 1. The approximated value uhðxiÞ of
node xi is equal to the nodal displacement ui.

The multi-quadrics (MQ) radial basis function is chosen, i.e.,
RiðxÞ ¼ ½r2i þ ðaqDrÞ2�q ð2Þ
where aq is the dimensionless shape parameter, q is the constant, ri is the space distance between node xi and

interpolation point x, and Dr is the average nodal space distance.
The polynomial basis PjðxÞ is chosen according to Pascal�s triangle. Generally, it is chosen as a complete

polynomial basis for computational accuracy. The number of nodes n in the influence domain of point x is

chosen to be larger than the terms m of polynomial basis (n > m), based on the reproduction requirement.

In the RPIM, displacement interpolation of any interpolation point x must pass through all of the n
nodes in the influence domain of point x. The interpolated displacement can be expressed as
ulðxkÞ ¼
Xn

i¼1

Rl
iðxkÞali þ

Xm
j¼1

P l
jðxkÞblj for k ¼ 1; 2; . . . ; n ð3Þ
where the superscript l means that the variables in Eq. (3) are local variables in the small influence domain

of the interpolation point x.

The polynomial basis needs to satisfy an extra requirement to guarantee unique approximation (Golberg

et al., 1999), and the extra requirement is usually taken as the following constraint forms:
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A schematic interpolation function uhðxÞ, approximated value uhðxiÞ and nodal displacement ui of node xi in the RPIM
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Xn

i¼1

P l
jðxiÞali ¼ 0 for j ¼ 1; 2; . . . ;m ð4Þ
The unknown coefficients ai and bj can be solved through the combination of Eqs. (3) and (4). Substituting

these coefficients into Eq. (1) gives the displacement interpolation function in the form of
uðxÞ ¼
Xn

i¼1

/iðxÞui ð5Þ
where /iðxÞ is the shape function for a node xi. The shape functions satisfy the following conditions:
/iðxiÞ ¼ 1 for i ¼ 1; 2; . . . ; n ð6aÞ

/jðxiÞ ¼ 0 for j 6¼ i ð6bÞ

Xn

i¼1

/iðxÞ ¼ 1 ð6cÞ
3. Governing equations

When a plate is subjected to non-uniform in-plane edge loadings, the resultant stress distribution in the

plate is non-uniform. To obtain the value of buckling loads of the plate, we must first obtain the pre-

buckling stress distribution. The RPIM is developed for first solving the non-uniform pre-buckling stress

distribution, and then the buckling loads. Two separate FORTRAN programs are coded based on the

present RPIM. The first program is used to compute the pre-buckling stress distribution in the plate based

on a 2-D elastic plane stress problem. The second program is used to determine the buckling loads of the
plate with the pre-buckling stress distribution that is obtained from the first program based on the Mindlin

plate assumption.
3.1. Governing equations for solving pre-buckling stress distribution

When a plate is subjected to in-plane edge loadings, it can be treated as 2-D elastic plane stress problem

for computing the pre-buckling stress distribution. The variational form of the equilibrium equation of the
static 2-D elastic plane stress problem is
Z
V
dðrsusÞt � rdV �

Z
V
duts � bdV �

Z
Sr

duts ��tdS ¼ 0 ð7Þ
where r is the stress field, us is the displacement field, b is the body forces, �t is the surface forces, and rs is

the derivative operator that is defined by
rs ¼
o=ox 0

0 o=oy
o=oy o=ox

2
4

3
5 ð8Þ
The RPIM is employed to implement the displacement interpolation us based on a set of scattered nodes
in a small influence domain of interpolation point x. According to Eq. (5), the displacement field us can be

interpolated as
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us ¼
u
v

� �
¼

Xn

i¼1

/i 0

0 /i

� �
ui
vi

� �
ð9Þ
By substituting the approximated displacements us of Eq. (9) into the variational form of Eq. (7), the

discrete system equation of 2-D elastic plane stress problem becomes
Kijuj ¼ f i for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n ð10Þ
where Kij is the stiffness matrix, f i is the force vector, and uj is the displacements of node xj that is defined

by
uj ¼
uj
vj

� �
ð11Þ
The stiffness matrix Kij can be written as
Kij ¼
Z
V
Bt

iDsBj dV ð12Þ
where
Bi ¼
o/i=ox 0

0 o/i=oy
o/i=oy o/i=ox

2
4

3
5 ð13Þ

Ds ¼
E

1� m2

1 m 0

m 1 0

0 0 ð1� mÞ=2

2
4

3
5 ð14Þ
in which E is the elastic rigidity and m is Poisson�s ratio.
The force vector f i can be written as
f i ¼
fxi
fyi

� �
¼

Z
V

/ibx
/iby

� �
dV þ

Z
Sr

/i�tx
/i�ty

� �
dS ð15Þ
The displacements of the 2-D elastic plane stress problem can be solved from Eq. (10). Thus, the pre-
buckling stress field of any point can be calculated as
r ¼
r0
x

r0
y

s0xy

8<
:

9=
; ¼

Xn

i¼1

DsBiui ð16Þ
3.2. Governing equations for solving buckling loads of Mindlin plate

For the static buckling analysis of a plate, the variational form of the total potential energy of the plate

can be written as
dP ¼
Z
V
dðrbubÞt � rb dV þ

Z
V
detn � sn dV ¼ 0 ð17Þ
where ub is the displacement field of the plate, rb is the linear stress field of the plate, en is the non-linear
strain field of the plate, sn is the pre-buckling stress field of the plate, and rb is the derivative operator that

is defined by
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rb ¼

o=ox 0 0

0 o=oy 0

o=oy o=ox 0
o=oz 0 o=ox
0 o=oz o=oy

2
66664

3
77775 ð18Þ
For a plate that is based on Mindlin�s plate assumption (Liew et al., 1996), there are three independent

displacement variables (see Fig. 2): transverse deflection w of a point on the mid-plane, rotation ux about

the y-axis, and rotation uy about the x-axis. These three independent variables can be interpolated based on

a set of scattered nodes in a small influence domain of interpolation point x. According to Eq. (5), the

displacement field ub can be interpolated as
ubðx; y; zÞ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

8<
:

9=
; ¼

zuxðx; yÞ
zuyðx; yÞ
wðx; yÞ

8<
:

9=
; ¼

z
Pn

i¼1 /iuxi

z
Pn

i¼1 /iuyiPn
i¼1 /iwi

8<
:

9=
; ð19Þ
The non-linear strain field en can be expressed as
en ¼

e0x
e0y
c0xy
c0xz
c0yz

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1
2
ðow=oxÞ2 þ 1

2
ðoux=oxÞ

2 þ 1
2
ðouy=oxÞ

2

1
2
ðow=oyÞ2 þ 1

2
ðoux=oyÞ

2 þ 1
2
ðouy=oyÞ

2

ðow=oxÞðow=oyÞ þ ðoux=oxÞðoux=oyÞ þ ðouy=oxÞðouy=oyÞ
0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð20Þ
The higher order terms of en in Eq. (20) can be omitted (Wang et al., 1993). Therefore, en can be simplified

as
en ¼

1
2
ðow=oxÞ2

1
2
ðow=oyÞ2

ðow=oxÞðow=oyÞ
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð21Þ
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Fig. 2. Mindlin plate, its co-ordinate system, and geometrical notation.
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The pre-buckling stress field sn that is produced by in-plane edge loadings can be written as
sn ¼

r0
x

r0
y

s0xy
s0xz
s0yz

8>>>><
>>>>:

9>>>>=
>>>>;

¼

r0
x

r0
y

s0xy
0

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð22Þ
Substituting the approximated displacements ub of Eq. (19) into the variational form of Eq. (17), the

discrete eigenvalue equation of the static buckling problem of Mindlin plates can be derived as
½Kij þ PcrHij�Uj ¼ 0 for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n ð23Þ
where Pcr is the eigenvalues, and Kij, Hij, and Uj are defined by
Kij ¼
Z
V
B

t
iDbBj dV ð24Þ

Hij ¼
H

p
ij 0 0

0 0 0
0 0 0

2
4

3
5 ð25Þ

Uj ¼
uxj

uyj

wj

8<
:

9=
; ð26Þ
in which
Bi ¼

0 zo/i=ox 0

0 0 zo/i=oy
0 zo/i=oy zo/i=ox

o/i=ox /i 0

o/i=oy 0 /i

2
66664

3
77775 ð27Þ

Db ¼ E=ð1� m2Þ

1 m 0 0 0

m 1 0 0 0

0 0 ð1� mÞ=2 0 0

0 0 0 ksð1� mÞ=2 0

0 0 0 0 ksð1� mÞ=2

2
66664

3
77775 ð28Þ

H
p
ij ¼

Z
V
½r0

xðo/i=oxÞðo/j=oxÞ þ r0
yðo/i=oyÞðo/j=oyÞ þ s0xyfðo/i=oxÞðo/j=oyÞ þ ðo/j=oxÞðo/i=oyÞg�dV

ð29Þ
and ks is the shear correction factor with a value of ks ¼ 5=6 adopted for Mindlin plates.

The shape functions that are employed in the RPIM satisfy the delta function property, i.e., the

approximated displacement at one node is equal to its nodal displacement, and essential boundary con-

ditions can be directly imposed on the discrete eigenvalue equation (Eq. (23)) using the same procedure as

used in the FEM. Solving Eq. (23) gives a set of eigenvalues and a corresponding set of eigenvectors. The
eigenvalues give the static buckling loads, and the eigenvectors give the buckling modes of the corre-

sponding buckling loads.
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4. Example problems

The present RPIM is formulated for calculating pre-buckling stress distribution and buckling loads of

square Mindlin plates with different boundaries and subjected to different in-plane edge loadings. Some
parameters of the square Mindlin plates are as follows:

Edge length a ¼ b ¼ 10 (m);

Young�s modulus E ¼ 200:0� 109 (N/m2);

Poisson�s ratio m ¼ 0:3.

Wang and Liu (2002) studied the choice of the shape parameter and the constant of the MQ radial basis

function and their influence on the stress solution for beam structures. This approach offers highly accurate
and stable results. Hence, we choose the shape parameter and constant of the MQ radial basis function as

aq ¼ 2:0 and q ¼ 1:03.
Polynomial term m ¼ 3 is taken (i.e., polynomial bases are f1; x; yg).
In all of the numerical examples except for special illustration, when the present RPIM is used to cal-

culate pre-buckling stress distributions and buckling loads of the plates, the size of quadrilateral influence

domain dmax is chosen to be 3.0 times the average nodal distance. Quadrilateral integration background

cells 15 · 15 are regularly distributed in the entire domain of the plates. Gauss points 4 · 4 at each inte-

gration background cell are chosen. Nodes 16 · 16 are regularly distributed in the entire domain of the
plates.

To compare the present RPIM results with FEM results, ANSYS is used to calculate buckling loads of

the plates. 24 · 24 elements with element type four-noded shell 63 and the Block Lanczos method are used.

In all tables and figures, the notations SSSS and CCCC denote simply supported and clamped at four

edges of the plates, respectively. The notation CFCF denotes that the two edges which are parallel to the

y-axis are clamped while the other two edges are free.

The buckling load parameter of the plates that are subjected to in-plane edge loadings is defined as

kp ¼ Pcrb=D0, where Pcr is critical in-plane edge loading and D0 ¼ Eh3=12ð1� m2Þ is elastic rigidity.

4.1. Verification studies

The square Mindlin plate (a=b ¼ 1) that is shown in Fig. 3 under a simply supported boundary condition

is considered for studying the convergence of buckling load parameters. The thickness ratio of the plate is

taken as h=b ¼ 0:01. The plate is subjected to three in-plane edge loadings: uniform edge loadings (c=b ¼ 1);

partial uniform edge loadings (c=b ¼ 0:5); and concentrated edge loadings (c=b ¼ 0). Different numbers of

nodes in the plate domain are used. The buckling load parameter is normalized as kp=k0p , where kp is the

present buckling load parameter and k0p is the buckling load parameter given by published literature or the

FEM result obtained by ANSYS. For plates that are subjected to uniform edge loadings (c=b ¼ 1),

k0p ¼ 39:478, which is presented by Timoshenko and James (1985). For plates that are subjected to partial
uniform edge loadings (c=b ¼ 0:5), to the best of the authors� knowledge no results are available in existing

literature. Therefore, we obtained the results by using ANSYS (24 · 24 elements with element type four-

noded shell 63). In this case, k0p ¼ 30:666. For plates that are subjected to concentrated edge loadings

(c=b ¼ 0), the Leissa and Ayoub (1988) solution is k0p ¼ 25:814. The normalized buckling load parameters

that we computed, using different numbers of nodes, are depicted in Fig. 4. The patch test for the inter-

polation function of the RPIM has been given in the literature (Wang and Liu, 2002). The RPIM cannot, in

general, easily pass the patch test. It passes the patch test of the linear displacement when polynomial terms

m ¼ 3 (i.e., linear polynomial basis). It failed to pass the linear displacement patch when no polynomial
terms are included. It can be observed from Fig. 4 that the buckling load parameters oscillate, especially for
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Fig. 3. A square plate that is subjected to axial in-plane edge loadings.
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the concentrated load case. When over 16 · 16 nodes are used, the normalized buckling load parameters fall
in a very small range, although they oscillate. A comparison of the results is presented in the first column of

Table 1, and shows the good agreement of the present results with the FEM solutions and the results that

were given by Leissa and Ayoub (1988) and Timoshenko and James (1985).
4.2. Results and discussions

The first example considered is a square Mindlin plate, as shown in Fig. 3, that is subjected to uniform

edge loadings (c=b ¼ 1) with different thickness ratios and boundary conditions. Two thickness ratios,
h=b ¼ 0:1 and h=b ¼ 0:05, and three essential boundary conditions, SSSS, CCCC, and CFCF, are



Table 1

Buckling load parameters kp ¼ Pcrb=D0 for a square Mindlin plate that is subjected to axial in-plane edge loadings (h=b ¼ 0:01)

c=b Boundaries

SSSS CCCC CFCF

0 25.659 (25.636a, 25.814b) 67.712 (66.057a) 36.290 (35.982a)

0.25 26.925 (27.160a) 70.925 (70.733a) 36.887 (36.759a)

0.5 30.024 (30.666a) 81.024 (81.277a) 38.656 (38.484a)

1.0 39.183 (40.105a, 39.478c) 100.178 (100.561a, 99.387c) 38.894 (38.549a)

aResults of FEM (ANSYS).
bResults of Leissa and Ayoub (1988).
cResults of Timoshenko and James (1985).

Table 2

Buckling load parameters kp ¼ Pcrb=D0 for a square Mindlin plate that is subjected to axial in-plane uniform edge loadings

Thickness ratio, h=b Boundaries RPIM Kitipornchai et al. (1993)

0.1 SSSS 37.36 37.38

CCCC 81.85 81.84

CFCF 34.68 34.62

0.05 SSSS 38.95 38.93

CCCC 94.57 94.34

CFCF 37.69 37.51
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considered. The results are shown in Table 2. It is evident that the present buckling load parameters agree

very well with the analytical solutions (Kitipornchai et al., 1993). The buckling load parameters of the plate

increase as the plate thickness decreases. The square Mindlin plate is now considered with four kinds of
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Fig. 5. The buckling load parameters of the square plate that is subjected to axial in-plane edge loadings.
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axial in-plane edge loadings (c=b ¼ 0, 0.25, 0.5, 1.0). The thickness ratio of the plate is taken as h=b ¼ 0:01.
ANSYS is used to calculate its buckling loads. The RPIM buckling load parameters, FEM results, and

other available results are listed in Table 1. The RPIM buckling load parameters and FEM results are also

drawn in Fig. 5. It is obvious that the RPIM buckling load parameters are in close agreement with the
available results and FEM results.

The shear-locking of the buckling load of a simply supported thin square plate that is subjected to

uniform axial in-plane edge loadings is studied. The thickness-to-width is h=b ¼ 0:001. Because the desired
high-order approximated displacement fields can be obtained easily in the RPIM, those for one transverse

deflection and two rotations are constructed to relieve shear-locking by simply using high-order polynomial
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Fig. 8. (a–c) Non-dimensional stresses r0
xbh=P of the simply supported square plate that is subjected to axial and shear in-plane edge

loadings.
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Fig. 9. (a–c) Non-dimensional stresses r0
y bh=P of the simply supported square plate that is subjected to axial and shear in-plane edge

loadings.
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Fig. 10. (a–c) Non-dimensional stresses s0xybh=P of the simply supported square plate that is subjected to axial and shear in-plane edge

loadings.
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Fig. 11. (a–c) Buckling mode shapes of the simply supported square plate that is subjected to axial and shear in-plane edge loadings.
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terms. The polynomial basis is chosen according to Pascal�s triangle. The same number of polynomial terms
is used for one transverse deflection and two rotations� approximations. 18 · 18 nodes in the whole plate

domain are used. The size of quadrilateral influence domain dmax is chosen to be 3.0 times the average nodal

distance for polynomial terms 3, 6, and 10. As the terms of the polynomial basis increase, more nodes must

be included in the influence domain of a selected point to approximate displacements. The size of the

influence domain dmax is chosen to be 4.5 times the average nodal distance when 15 polynomial terms are

used. The normalized buckling load parameters are shown in Fig. 6. The shear-locking phenomenon is

observed very clearly when only three polynomial terms are used, i.e., the normalized buckling load

parameter becomes too big. The shear-locking is gradually relieved as the polynomial terms are increased.
When the terms of the polynomial basis up to 15 are used, the shear-locking is eliminated.

The second example is a square Mindlin plate that is subjected to axial and shear in-plane edge

loadings, as shown in Fig. 7. The two edges that are parallel to the y-axis are applied with uniform shear

loads. The top edge that is parallel to the x-axis is applied with a concentrated load (c=a ¼ 0), partial

uniform load (c=a ¼ 0:25 and 0.5), or uniform load (c=a ¼ 1). The thickness ratio of the plate is taken as



Table 3

Buckling load parameters kp ¼ Pcrb=D0 for a square Mindlin plate that is subjected to axial and shear in-plane edge loadings

(h=b ¼ 0:01)

c=a Boundaries

SSSS CCCC CFCF

0 32.371 (32.129a) 82.075 (80.182a) 13.332 (13.366a)

0.25 34.042 (34.559a) 86.438 (86.272a) 14.813 (14.918a)

0.5 39.051 (39.888a) 100.423 (100.529a) 19.270 (19.352a)

1.0 56.646 (56.335a) 144.575 (143.041a) 34.646 (34.627a)

aResults of FEM (ANSYS).
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h=b ¼ 0:01. Three cases of essential boundary conditions, SSSS, CCCC, and CFCF, are considered. The

pre-buckling stresses of the square Mindlin plate for the loading cases c=a ¼ 0; 0:5, and 1.0 are computed
using the RPIM. The non-dimensional stresses r0

xbh=P , r
0
ybh=P , and s0xybh=P of all the Gaussian points in

the entire plate domain are plotted in Figs. 8–10(a)–(c), respectively. The non-dimensional normal stresses

r0
xbh=P and r0

ybh=P , are symmetrical about the y-axis, and the non-dimensional shear stresses s0xybh=P are

anti-symmetrical about the y-axis. The distribution of the non-dimensional normal stresses is mainly

affected by the axial load. When a concentrated axial load is applied, the magnitude of the non-

dimensional normal and shear stresses in the vicinity of the concentrated load is large, but is very small at

the area farthest away from the load. No singularity of the stresses occurs. When a uniform axial load is

applied, the non-dimensional normal stresses r0
xbh=P are anti-symmetrical about the x-axis, and their

magnitude gradually decreases as the area is far away from the top or bottom side. The magnitude of the

non-dimensional normal stresses r0
ybh=P gradually decreases as the area is far away from the top side.

The magnitude of the non-dimensional shear stresses s0xybh=P decreases as the area is far away from the

lateral side. The magnitude of the non-dimensional normal stresses r0
xbh=P and r0

ybh=P is larger than that

of the non-dimensional shear stresses s0xybh=P . The affection zones of the non-dimensional normal stresses

increase as the axial load changes from a concentrated load to a uniform load.

The buckling mode shapes of the plate for the loading cases c=a ¼ 0, 0.5, and 1.0 are calculated and

depicted in Fig. 11(a)–(c). The buckling mode shapes are less affected by the loadings, although the pre-
buckling stresses are much affected by them.
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Fig. 12. The buckling load parameters of the square plate that is subjected to axial and shear in-plane edge loadings.



x

y

b

2P2P

2c 2c
P

ad d

Fig. 13. A square plate that is subjected to two opposite in-plane edge loadings.

K.M. Liew, X.L. Chen / International Journal of Solids and Structures 41 (2004) 1677–1695 1693
The buckling loads for the loading cases c=a ¼ 0, 0.25, 0.5, and 1.0 are computed using the RPIM and

ANSYS. The results are presented in Table 3 and Fig. 12, and the RPIM buckling load parameters are in
excellent agreement with the FEM results. The buckling load parameters increase as the axial load changes

from a concentrated load to a uniform load. The affection zones of the pre-buckling normal and shear

stresses are very small for the concentrated axial load, but the buckling load parameter is also small.

Therefore, increasing the distribution zone of pre-buckling stresses in the plate can increase the buckling

load.

The third example is a square Mindlin plate, as shown in Fig. 13, that is subjected to two opposite in-

plane edge loadings. The thickness ratio of the plate is h=b ¼ 0:01. Three boundary conditions, SSSS,

CCCC, and CFCF, are considered. Different in-plane edge loadings are applied to the plate through the
changes of c=a and d=a. The buckling loads of the plate are calculated using the RPIM and ANSYS. The

results are listed in Table 4 and shown in Fig. 14(a) and (b). The RPIM buckling load parameters agree very

well with the FEM results.
Table 4

Buckling load parameters kp ¼ Pcrb=D0 for a square Mindlin plate that is subjected to two opposite in-plane edge loadings (h=b ¼ 0:01)

c=a d=a Boundaries

SSSS CCCC CFCF

0 0 28.650 (28.773a) 72.237 (70.599a) 13.656 (13.450a)

0.25 28.762 (29.227a) 73.625 (71.936a) 13.682 (13.459a)

0.25 0 30.766 (30.485a) 75.567 (75.105a) 16.121 (15.925a)

0.25 31.027 (30.949a) 77.203 (76.652a) 16.262 (16.075a)

0.5 0 34.047 (34.165a) 84.647 (84.418a) 20.799 (20.833a)

0.25 34.626 (34.810a) 86.570 (86.363a) 20.994 (21.066a)

1.0 0 44.012 (44.359a) 105.837 (105.600a) 39.477 (39.675a)

0.25 44.861 (44.609a) 107.821 (107.497a) 39.829 (40.084a)

aResults of FEM (ANSYS).
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Fig. 14. The buckling load parameters of the square plate that is subjected to two opposite in-plane edge loadings.
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5. Conclusions

The buckling loads of the Mindlin plates that are subjected to non-uniform in-plane edge loadings are

computed by employing a newly developed RPIM. The displacement in the RPIM is interpolated according

to a set of scattered nodes instead of elements. It makes the RPIM flexible. The RPIM can avoid the
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disadvantages that arise in the FEM from the use of elements, e.g., remeshing in the FEM is often required

to avoid heavily distorted elements and ensure the accuracy of results. The RPIM can easily control the

location and number of nodes, e.g., one can easily add new nodes for buckling load calculation in the

distribution of nodes for pre-buckling stress calculation. One can also easily adjust the nodal distribution
for the desired computational accuracy, e.g., one can let the density of nodes near the concentrated load be

higher without complex processes. The interpolated displacements can be easily approximated in a higher

desired order by taking more nodes in the influence domain. The RPIM imposes essential boundary

conditions similar to the FEM. The study shows that the RPIM with the MQ radial basis function offers

good accuracy. For pre-buckling stress calculation, no stress singularity occurs when a concentrated load is

applied. The RPIM uses fewer nodes to obtain the same level of accuracy as the FEM. Hence, the RPIM is

efficient for solving the buckling loads of the Mindlin plates that are subjected to non-uniform in-plane edge

loadings.
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