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Abstract

This paper considers the elastic buckling of rectangular Mindlin plates that are subjected to partially distributed in-
plane edge loadings. A numerical algorithm based on the radial point interpolation method (RPIM) is proposed for the
solution of such plates. The pre-buckling stresses are first determined using the RPIM based on a two-dimensional (2-
D) elastic plane stress problem. The buckling load intensity factors for rectangular plates that incorporate these pre-
determined pre-buckling stresses are then computed via the RPIM based on the Mindlin plate theory. Numerical
examples of the plates with various boundaries and subjected to different partially distributed in-plane edge loadings are
presented. Shear-locking of the buckling load is studied. The results demonstrate the high accuracy of the proposed
RPIM.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Thick plates are important structural elements, and are used in a wide range of engineering applications.
They can be analyzed using the thin plate theory, but because the effects of transverse shear deformation are
neglected, the deflections are underestimated and the natural frequencies and buckling loads are over-
estimated. Notable works on buckling and vibration of thick plates include those of Wang et al. (1993),
Kitipornchai et al. (1993), Liew et al. (1995, 1996) and Cheung and Zhou (2002). The objective of this paper
is to determine the elastic buckling loads of the rectangular Mindlin plates that are subjected to partial in-
plane edge loads. This work is motivated by the fact that not many buckling results for this type of plates
are found in the literature. To obtain results for this problem, we employed a meshless method—the radial
point interpolation method (RPIM) for the analysis.
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Existing meshless methods have their displacement interpolated according to a set of scattered nodes in
the influence domain of the interpolation point. One can easily adjust the number of nodes and nodal
distribution for desired computational accuracy without complex procedures. The moving least squares
(MLS) technique was developed by mathematicians for data fitting and surface construction. The conti-
nuity of the MLS approximation depends mainly on the continuity of the chosen weight function. The
MLS technique uses a low-order polynomial basis to construct high-order continuous approximation by
choosing the appropriate weight function. Nayroles et al. (1992) were the first to employ the MLS technique
to construct shape functions for their diffuse element method (DEM). Liew et al. (2002a) developed a
meshless method that combined the MLS technique with the differential quadrature (DQ) method, called
the MLSDQ method. Based on the DEM, Belytschko et al. (1994) proposed a different approach, called the
EFG method. The EFG method uses the MLS technique to approximate displacements and the Galerkin
procedure to establish weak forms of system equations. The method provides stable and highly accurate
results. Liu et al. (1995) developed the reproducing kernel particle method (RKPM) by adding a correction
function to the kernel to improve the smooth particle hydrodynamics (SPH) approximation near the
boundaries. The modified interpolation in the RKPM satisfies consistency requirements. The shape func-
tion is smoother so that higher accuracy can be achieved for large deformation problems. Liew et al.
employed the RKPM for the analysis of large deformation (2002b), free vibration of rotating cylindrical
shells (2002¢) and elasto-plasticity (2002d). The EFG and RKPM approximation functions are not equal to
unity at nodes, and the shape functions do not have delta function properties. This complicates the
imposition of essential boundary conditions.

Radial basis functions are insensitive to spatial dimension, do not depend on the direction of node to
interpolation point, and are continuously differentiable and integrable. A number of radial basis functions
have been used by mathematicians. Four forms of the functions with shape parameters are generally
used, i.e.,

(1) multi-quadrics (MQ): R,(x) = (r? + c?)%;
(2) Gaussian (EXP): R;(x) = exp(—cr?);

(3) thin plate spline (TPS): R;(x) = r/;

(4) logarithmic RBF: R;(r;) = r!logr;.

where r; is the distance between the interpolation point x and node x;, ¢ and # are the dimensionless shape
parameters, and ¢ is the constant.

The MQ radial basis function was first proposed by Hardy (1990) for the interpolation of geographical
scattered data. The MQ radial basis function has been widely used in surface fitting and in constructing
approximate solution for partial differential equations (Kansa, 1990). The MQ radial basis function was
used in the PIM by Wang and Liu (2002).

The treatment of buckling of plates that are subjected to partially distributed in-plane edge loadings with
non-uniform pre-buckling stresses is generally more involved. First we must deal with the pre-buckling
stresses that are non-uniform near the in-plane edge loadings. The complex nature of the pre-buckling stress
field makes it almost impossible to obtain an exact solution for this problem. Hence, the RPIM is
implemented in the buckling analysis of Mindlin plates that are subjected to partially distributed in-plane
edge loadings. The pre-buckling stresses of the plates are first determined using the RPIM based on a two-
dimensional (2-D) elastic plane stress problem. The buckling loads of the plates with these predetermined
pre-buckling stresses are then computed by the RPIM based on the Mindlin plate theory. The ANSYS
software package, a type of finite element (FE) software, is also employed to calculate the buckling loads of
the plates for comparison. Numerical examples of Mindlin plates with different boundary conditions and
subjected to partially distributed in-plane edge loadings are presented. This study shows that the RPIM is
able to produce results with high accuracy.
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2. Displacement interpolation based on RPIM

A displacement u(x) (x € {x,y}) in the problem domain is interpolated in a small neighborhood of
interpolation point x by using a radial basis function and polynomial basis (Wang and Liu, 2002) in the
RPIM, and is defined by

o) = Y R+ > B (1)

where R;(x) is the radial basis function, a; is the unknown coefficient that corresponds to the radial basis
function, » is the number of nodes in the influence domain of interpolation point x, P;(x) is the polynomial
basis that has m polynomial terms, and b; is the unknown coefficient corresponding to the polynomial basis.
The interpolation function passes through all of the nodes in the influence domain. For one-dimensional
problems, the schematic interpolation function " (x) is drawn in Fig. 1. The approximated value u”(x;) of
node x; is equal to the nodal displacement ;.

The multi-quadrics (MQ) radial basis function is chosen, i.e.,

Ri(x) = [2 + (o, AF))? (2)

where , is the dimensionless shape parameter, ¢ is the constant, #; is the space distance between node x; and
interpolation point x, and Ar is the average nodal space distance.

The polynomial basis P;(x) is chosen according to Pascal’s triangle. Generally, it is chosen as a complete
polynomial basis for computational accuracy. The number of nodes 7 in the influence domain of point x is
chosen to be larger than the terms m of polynomial basis (n > m), based on the reproduction requirement.

In the RPIM, displacement interpolation of any interpolation point x must pass through all of the n
nodes in the influence domain of point x. The interpolated displacement can be expressed as

W(x) =Y Ri(xi)aj+ Y Pi(x)b; fork=1,2,....n (3)
i=1 j=1

where the superscript 1 means that the variables in Eq. (3) are local variables in the small influence domain
of the interpolation point x.

The polynomial basis needs to satisfy an extra requirement to guarantee unique approximation (Golberg
et al., 1999), and the extra requirement is usually taken as the following constraint forms:

u(x)

u / Node x;

uh (%)

o Xi

Fig. 1. A schematic interpolation function u"(x), approximated value u(x;) and nodal displacement u; of node x; in the RPIM
technique.
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ZP}(X,-)aE:O forj=1,2,....m 4)

i=1

The unknown coefficients a; and b; can be solved through the combination of Eqs. (3) and (4). Substituting
these coefficients into Eq. (1) gives the displacement interpolation function in the form of

u(x) =Y di(x)u (5)
i=1
where ¢,;(x) is the shape function for a node x;. The shape functions satisfy the following conditions:
¢;(x;))=1 fori=1,2,...,n (6a)
$,(x) =0 for j#i (6b)
D odix) =1 (6¢)
i=1

3. Governing equations

When a plate is subjected to non-uniform in-plane edge loadings, the resultant stress distribution in the
plate is non-uniform. To obtain the value of buckling loads of the plate, we must first obtain the pre-
buckling stress distribution. The RPIM is developed for first solving the non-uniform pre-buckling stress
distribution, and then the buckling loads. Two separate FORTRAN programs are coded based on the
present RPIM. The first program is used to compute the pre-buckling stress distribution in the plate based
on a 2-D elastic plane stress problem. The second program is used to determine the buckling loads of the
plate with the pre-buckling stress distribution that is obtained from the first program based on the Mindlin
plate assumption.

3.1. Governing equations for solving pre-buckling stress distribution

When a plate is subjected to in-plane edge loadings, it can be treated as 2-D elastic plane stress problem
for computing the pre-buckling stress distribution. The variational form of the equilibrium equation of the
static 2-D elastic plane stress problem is

/S(Vgus)t'O'dV_ / 5u§~de—/ ou’ - tdS =0 (7)
V v Ss

where 6 is the stress field, u, is the displacement field, b is the body forces, t is the surface forces, and V, is
the derivative operator that is defined by

o/ox 0
V,=1| 0 /0y (8)
0/dy 0/ox

The RPIM is employed to implement the displacement interpolation u, based on a set of scattered nodes
in a small influence domain of interpolation point x. According to Eq. (5), the displacement field u; can be
interpolated as
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o ek B o

By substituting the approximated displacements u, of Eq. (9) into the variational form of Eq. (7), the
discrete system equation of 2-D elastic plane stress problem becomes
Ku =f fori=12,...,nand j=1,2,...,n (10)

where K;; is the stiffness matrix, f; is the force vector, and u; is the displacements of node x; that is defined
by

20

The stiffness matrix K;; can be written as

V
where
0¢;/ox 0
B;=| 0  0¢/0 (13)
0¢;/0y 0¢,/0x
1 v 0
Vo o0 (1-v))/2

in which E is the elastic rigidity and v is Poisson’s ratio.
The force vector f; can be written as

VARAUA R Rt "

The displacements of the 2-D elastic plane stress problem can be solved from Eq. (10). Thus, the pre-
buckling stress field of any point can be calculated as

a” "
0
g = UV = DsBiui 16
g 1§:1 (16)

T Xy

3.2. Governing equations for solving buckling loads of Mindlin plate

For the static buckling analysis of a plate, the variational form of the total potential energy of the plate
can be written as

6H:/6(Vbllb)t'0'de+/682'1,1(”/:0 (17)
4 4
where u, is the displacement field of the plate, o, is the linear stress field of the plate, &, is the non-linear

strain field of the plate, 7, is the pre-buckling stress field of the plate, and V, is the derivative operator that
is defined by
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o/ox 0 0
0 9/dy 0
V,=|0/dy 0/ox 0 (18)
0/oz 0  9/dx
0 9/oz d/oy

For a plate that is based on Mindlin’s plate assumption (Liew et al., 1996), there are three independent
displacement variables (see Fig. 2): transverse deflection w of a point on the mid-plane, rotation ¢, about
the y-axis, and rotation ¢, about the x-axis. These three independent variables can be interpolated based on
a set of scattered nodes in a small influence domain of interpolation point x. According to Eq. (5), the
displacement field u, can be interpolated as

u(x7yaz) Z(px(x7y) ZZ:'I:I d)i(pxi
Ub(X,yaZ) = U(X,y,Z) = ZQD},(X,y) = ZZ?:] (rbiq)yi (19)
W(xvyvz) w(x,y) 27:1 ¢iwi

The non-linear strain field g, can be expressed as

& L (@w/ax)* +1 (00, /%)’ + 1 (3¢, /0x)*
5 (Ow/2y)’ +5(00,/29)’ +5(00,/0y)’
B =4 T 0= (Qw/Q0)(Ow/0y) + (09.,/0x) (09,/2y) + (9, /2x) (00, /Oy) (20)
Vxz 0
V;)z 0

The higher order terms of ¢, in Eq. (20) can be omitted (Wang et al., 1993). Therefore, ¢, can be simplified
as

1 (ow/ox)?
L (w/dy)?
&, = { (dw/x)(ow/dy) (21)
0
0
7
y
_______________ _’_ h
gpy/.‘ //'/ ‘f
XU, ) 0
/‘/‘/'/ b
a
Y ozw

Fig. 2. Mindlin plate, its co-ordinate system, and geometrical notation.
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The pre-buckling stress field 7, that is produced by in-plane edge loadings can be written as

g 8 0'2
ag 2 0'2
T, = ‘Egy = Tgy (22)
0 0
T, 0

Substituting the approximated displacements u, of Eq. (19) into the variational form of Eq. (17), the
discrete eigenvalue equation of the static buckling problem of Mindlin plates can be derived as

where P, is the eigenvalues, and K;;, H;;, and U, are defined by
Vv
7 0 0
0O 0 O

_ Puj
U;=4q o, (26)
Wi

in which
0 z0¢; /Ox 0
0 0 z0¢, /0y
B = 0 z0¢,; /0y zO0¢,/x (27)
0, /0x ¢, 0
0¢,/dy 0 b
1 v 0 0 0
v 1 0 0 0
D,=E/(1-v)|0 0 (1-v)/2 0 0 (28)
0 0 0 k(1 —v)/2 0
0 0 0 0 k(1 —v)/2

Hj, = /V [0:(06/2x) (9¢,/0x) + 03¢/ 0y) (0b;/Oy) + 7,,{ (0b;/0x) (3h;/ Q) + (¢p,/0x) (0, /) } AV
(29)

and k; is the shear correction factor with a value of k, = 5/6 adopted for Mindlin plates.

The shape functions that are employed in the RPIM satisfy the delta function property, i.e., the
approximated displacement at one node is equal to its nodal displacement, and essential boundary con-
ditions can be directly imposed on the discrete eigenvalue equation (Eq. (23)) using the same procedure as
used in the FEM. Solving Eq. (23) gives a set of eigenvalues and a corresponding set of eigenvectors. The
eigenvalues give the static buckling loads, and the eigenvectors give the buckling modes of the corre-
sponding buckling loads.
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4. Example problems

The present RPIM is formulated for calculating pre-buckling stress distribution and buckling loads of
square Mindlin plates with different boundaries and subjected to different in-plane edge loadings. Some
parameters of the square Mindlin plates are as follows:

Edge length a = b = 10 (m);
Young’s modulus £ = 200.0 x 10° (N/m?);
Poisson’s ratio v = 0.3.

Wang and Liu (2002) studied the choice of the shape parameter and the constant of the MQ radial basis
function and their influence on the stress solution for beam structures. This approach offers highly accurate
and stable results. Hence, we choose the shape parameter and constant of the MQ radial basis function as
oy = 2.0 and g = 1.03.

Polynomial term m = 3 is taken (i.e., polynomial bases are {1,x,y}).

In all of the numerical examples except for special illustration, when the present RPIM is used to cal-
culate pre-buckling stress distributions and buckling loads of the plates, the size of quadrilateral influence
domain d,, is chosen to be 3.0 times the average nodal distance. Quadrilateral integration background
cells 15x 15 are regularly distributed in the entire domain of the plates. Gauss points 4 x4 at each inte-
gration background cell are chosen. Nodes 16x16 are regularly distributed in the entire domain of the
plates.

To compare the present RPIM results with FEM results, ANSYS is used to calculate buckling loads of
the plates. 24 x 24 elements with element type four-noded shell 63 and the Block Lanczos method are used.

In all tables and figures, the notations SSSS and CCCC denote simply supported and clamped at four
edges of the plates, respectively. The notation CFCF denotes that the two edges which are parallel to the
y-axis are clamped while the other two edges are free.

The buckling load parameter of the plates that are subjected to in-plane edge loadings is defined as
k, = P:b/Dy, where P, is critical in-plane edge loading and Dy = Eh*/12(1 — v?) is elastic rigidity.

4.1. Verification studies

The square Mindlin plate (a/b = 1) that is shown in Fig. 3 under a simply supported boundary condition
is considered for studying the convergence of buckling load parameters. The thickness ratio of the plate is
taken as #/b = 0.01. The plate is subjected to three in-plane edge loadings: uniform edge loadings (¢/b = 1);
partial uniform edge loadings (¢/b = 0.5); and concentrated edge loadings (¢/b = 0). Different numbers of
nodes in the plate domain are used. The buckling load parameter is normalized as &, /kg, where £, is the
present buckling load parameter and kg is the buckling load parameter given by published literature or the
FEM result obtained by ANSYS. For plates that are subjected to uniform edge loadings (¢/b = 1),
kg = 39.478, which is presented by Timoshenko and James (1985). For plates that are subjected to partial
uniform edge loadings (¢/b = 0.5), to the best of the authors’ knowledge no results are available in existing
literature. Therefore, we obtained the results by using ANSYS (24 x24 elements with element type four-
noded shell 63). In this case, k]? = 30.666. For plates that are subjected to concentrated edge loadings
(¢/b = 0), the Leissa and Ayoub (1988) solution is kg = 25.814. The normalized buckling load parameters
that we computed, using different numbers of nodes, are depicted in Fig. 4. The patch test for the inter-
polation function of the RPIM has been given in the literature (Wang and Liu, 2002). The RPIM cannot, in
general, easily pass the patch test. It passes the patch test of the linear displacement when polynomial terms
m =3 (i.e., linear polynomial basis). It failed to pass the linear displacement patch when no polynomial
terms are included. It can be observed from Fig. 4 that the buckling load parameters oscillate, especially for
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Fig. 3. A square plate that is subjected to axial in-plane edge loadings.
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Fig. 4. Convergence study of the buckling load parameters of the simply supported square plate that is subjected to axial in-plane edge
loadings.

the concentrated load case. When over 16 x 16 nodes are used, the normalized buckling load parameters fall
in a very small range, although they oscillate. A comparison of the results is presented in the first column of
Table 1, and shows the good agreement of the present results with the FEM solutions and the results that
were given by Leissa and Ayoub (1988) and Timoshenko and James (1985).

4.2. Results and discussions

The first example considered is a square Mindlin plate, as shown in Fig. 3, that is subjected to uniform
edge loadings (¢/b = 1) with different thickness ratios and boundary conditions. Two thickness ratios,
h/b=0.1 and h/b=0.05, and three essential boundary conditions, SSSS, CCCC, and CFCF, are
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Table 1
Buckling load parameters k, = P..b/D, for a square Mindlin plate that is subjected to axial in-plane edge loadings (/b = 0.01)
c/b Boundaries
SSSS CCCC CFCF
0 25.659 (25.636%, 25.814%) 67.712 (66.057*) 36.290 (35.982?)
0.25 26.925 (27.160%) 70.925 (70.733%) 36.887 (36.759%)
0.5 30.024 (30.666%) 81.024 (81.277%) 38.656 (38.484%)
1.0 39.183 (40.105%, 39.478°) 100.178 (100.561%, 99.387¢) 38.894 (38.549%)

#Results of FEM (ANSYS).
®Results of Leissa and Ayoub (1988).
“Results of Timoshenko and James (1985).

Table 2
Buckling load parameters k, = P..b/D, for a square Mindlin plate that is subjected to axial in-plane uniform edge loadings
Thickness ratio, h/b Boundaries RPIM Kitipornchai et al. (1993)
0.1 SSSS 37.36 37.38
CCCC 81.85 81.84
CFCF 34.68 34.62
0.05 SSSS 38.95 38.93
CCCC 94.57 94.34
CFCF 37.69 37.51

considered. The results are shown in Table 2. It is evident that the present buckling load parameters agree
very well with the analytical solutions (Kitipornchai et al., 1993). The buckling load parameters of the plate
increase as the plate thickness decreases. The square Mindlin plate is now considered with four kinds of

110

100

90

SSSS(RPIM) | 7

3 3 O SSSS(FEM)
N ; | i |--- cccc(RPIM)
O e S oo o CCCC (FEM) [
| | i |---- CFCF(RPIM)
50 | - o CFCF(FEM) | |

20 .

‘ ‘
0 0.25 0.5 0.75 1
c/b

Fig. 5. The buckling load parameters of the square plate that is subjected to axial in-plane edge loadings.



K M. Liew, X.L. Chen | International Journal of Solids and Structures 41 (2004) 1677-1695 1687

axial in-plane edge loadings (¢/b = 0, 0.25, 0.5, 1.0). The thickness ratio of the plate is taken as #/b = 0.01.
ANSYS is used to calculate its buckling loads. The RPIM buckling load parameters, FEM results, and
other available results are listed in Table 1. The RPIM buckling load parameters and FEM results are also
drawn in Fig. 5. It is obvious that the RPIM buckling load parameters are in close agreement with the
available results and FEM results.

The shear-locking of the buckling load of a simply supported thin square plate that is subjected to
uniform axial in-plane edge loadings is studied. The thickness-to-width is #/b = 0.001. Because the desired
high-order approximated displacement fields can be obtained easily in the RPIM, those for one transverse
deflection and two rotations are constructed to relieve shear-locking by simply using high-order polynomial

NoNN
N NN O

=
o

Normalized buckling load k/k?
- P
IS [

[N
[N)

[y

Polynomid terms m (h/b=0.001)

Fig. 6. Shear-locking study of the buckling load of the simply supported thin square plate that is subjected to uniform axial in-plane
edge loadings.
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Fig. 7. A square plate that is subjected to axial and shear in-plane edge loadings.
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Fig. 9. (a—) Non-dimensional stresses o'f,bh /P of the simply supported square plate that is subjected to axial and shear in-plane edge

loadings.
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() c/a=1

Fig. 11. (a—c) Buckling mode shapes of the simply supported square plate that is subjected to axial and shear in-plane edge loadings.

terms. The polynomial basis is chosen according to Pascal’s triangle. The same number of polynomial terms
is used for one transverse deflection and two rotations’ approximations. 18 x 18 nodes in the whole plate
domain are used. The size of quadrilateral influence domain d,,,x is chosen to be 3.0 times the average nodal
distance for polynomial terms 3, 6, and 10. As the terms of the polynomial basis increase, more nodes must
be included in the influence domain of a selected point to approximate displacements. The size of the
influence domain dp,, is chosen to be 4.5 times the average nodal distance when 15 polynomial terms are
used. The normalized buckling load parameters are shown in Fig. 6. The shear-locking phenomenon is
observed very clearly when only three polynomial terms are used, i.e., the normalized buckling load
parameter becomes too big. The shear-locking is gradually relieved as the polynomial terms are increased.
When the terms of the polynomial basis up to 15 are used, the shear-locking is eliminated.

The second example is a square Mindlin plate that is subjected to axial and shear in-plane edge
loadings, as shown in Fig. 7. The two edges that are parallel to the y-axis are applied with uniform shear
loads. The top edge that is parallel to the x-axis is applied with a concentrated load (c¢/a = 0), partial
uniform load (¢/a = 0.25 and 0.5), or uniform load (¢/a = 1). The thickness ratio of the plate is taken as
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Table 3
Buckling load parameters k, = P..b/D, for a square Mindlin plate that is subjected to axial and shear in-plane edge loadings
(h/b=0.01)

c/a Boundaries

SSSS cccc CFCF
0 32.371 (32.129%) 82.075 (80.182%) 13.332 (13.366%)
0.25 34.042 (34.559%) 86.438 (86.272%) 14.813 (14.918%)
0.5 39.051 (39.888%) 100.423 (100.529%) 19.270 (19.352%)
1.0 56.646 (56.335%) 144.575 (143.041%) 34.646 (34.627%)

“Results of FEM (ANSYS).

h/b =0.01. Three cases of essential boundary conditions, SSSS, CCCC, and CFCF, are considered. The
pre-buckling stresses of the square Mindlin plate for the loading cases ¢/a = 0,0.5, and 1.0 are computed
using the RPIM. The non-dimensional stresses a"bh/P, o-Sbh/P, and rgybh/P of all the Gaussian points in
the entire plate domain are plotted in Figs. 8—10(a)—(c), respectively. The non-dimensional normal stresses
agbh/P and af,bh /P, are symmetrical about the y-axis, and the non-dimensional shear stresses rgybh/P are
anti-symmetrical about the y-axis. The distribution of the non-dimensional normal stresses is mainly
affected by the axial load. When a concentrated axial load is applied, the magnitude of the non-
dimensional normal and shear stresses in the vicinity of the concentrated load is large, but is very small at
the area farthest away from the load. No singularity of the stresses occurs. When a uniform axial load is
applied, the non-dimensional normal stresses ¢’bh/P are anti-symmetrical about the x-axis, and their
magnitude gradually decreases as the area is far away from the top or bottom side. The magnitude of the
non-dimensional normal stresses agbh /P gradually decreases as the area is far away from the top side.
The magnitude of the non-dimensional shear stresses ‘Egybh/P decreases as the area is far away from the
lateral side. The magnitude of the non-dimensional normal stresses ¢°bh/P and agbh /P is larger than that
of the non-dimensional shear stresses t° bi/P. The affection zones of the non-dimensional normal stresses
increase as the axial load changes from a concentrated load to a uniform load.

The buckling mode shapes of the plate for the loading cases ¢/a =0, 0.5, and 1.0 are calculated and
depicted in Fig. 11(a)—(c). The buckling mode shapes are less affected by the loadings, although the pre-
buckling stresses are much affected by them.

150
—— SSSS (RPIM)
0 SSSS (FEM)
15]| ~== COCC(RPIM)
o CCCC (FEM)
--=- CFCF (RPIM)
o CFCF (FEM) : : :
e
L omee- a7
a :
A‘Q 75 —7117————”7———7”———‘, rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Fig. 12. The buckling load parameters of the square plate that is subjected to axial and shear in-plane edge loadings.
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Fig. 13. A square plate that is subjected to two opposite in-plane edge loadings.

The buckling loads for the loading cases ¢/a = 0, 0.25, 0.5, and 1.0 are computed using the RPIM and
ANSYS. The results are presented in Table 3 and Fig. 12, and the RPIM buckling load parameters are in
excellent agreement with the FEM results. The buckling load parameters increase as the axial load changes
from a concentrated load to a uniform load. The affection zones of the pre-buckling normal and shear
stresses are very small for the concentrated axial load, but the buckling load parameter is also small.
Therefore, increasing the distribution zone of pre-buckling stresses in the plate can increase the buckling
load.

The third example is a square Mindlin plate, as shown in Fig. 13, that is subjected to two opposite in-
plane edge loadings. The thickness ratio of the plate is #/b = 0.01. Three boundary conditions, SSSS,
CCCC, and CFCF, are considered. Different in-plane edge loadings are applied to the plate through the
changes of ¢/a and d/a. The buckling loads of the plate are calculated using the RPIM and ANSYS. The
results are listed in Table 4 and shown in Fig. 14(a) and (b). The RPIM buckling load parameters agree very
well with the FEM results.

Table 4
Buckling load parameters k, = Pb/D, for a square Mindlin plate that is subjected to two opposite in-plane edge loadings (h/b = 0.01)

c/a d/a Boundaries
SSSS Cccce CFCF
0 0 28.650 (28.773%) 72.237 (70.599%) 13.656 (13.450%)
0.25 28.762 (29.227%) 73.625 (71.936%) 13.682 (13.459%)
0.25 0 30.766 (30.485%) 75.567 (75.105%) 16.121 (15.925%)
0.25 31.027 (30.949%) 77.203 (76.652*) 16.262 (16.075%)
0.5 0 34.047 (34.165%) 84.647 (84.418%) 20.799 (20.833%)
0.25 34.626 (34.810%) 86.570 (86.363%) 20.994 (21.066%)
1.0 0 44.012 (44.359%) 105.837 (105.600%) 39.477 (39.675%)
0.25 44.861 (44.609%) 107.821 (107.497%) 39.829 (40.084*)

#Results of FEM (ANSYS).
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Fig. 14. The buckling load parameters of the square plate that is subjected to two opposite in-plane edge loadings.

5. Conclusions

The buckling loads of the Mindlin plates that are subjected to non-uniform in-plane edge loadings are
computed by employing a newly developed RPIM. The displacement in the RPIM is interpolated according
to a set of scattered nodes instead of elements. It makes the RPIM flexible. The RPIM can avoid the
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disadvantages that arise in the FEM from the use of elements, e.g., remeshing in the FEM is often required
to avoid heavily distorted elements and ensure the accuracy of results. The RPIM can easily control the
location and number of nodes, e.g., one can easily add new nodes for buckling load calculation in the
distribution of nodes for pre-buckling stress calculation. One can also easily adjust the nodal distribution
for the desired computational accuracy, e.g., one can let the density of nodes near the concentrated load be
higher without complex processes. The interpolated displacements can be easily approximated in a higher
desired order by taking more nodes in the influence domain. The RPIM imposes essential boundary
conditions similar to the FEM. The study shows that the RPIM with the MQ radial basis function offers
good accuracy. For pre-buckling stress calculation, no stress singularity occurs when a concentrated load is
applied. The RPIM uses fewer nodes to obtain the same level of accuracy as the FEM. Hence, the RPIM is
efficient for solving the buckling loads of the Mindlin plates that are subjected to non-uniform in-plane edge
loadings.
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